Аппроксимация характеристик нелинейных элементов. Нелинейные цепи и аппроксимация характеристик нелинейных элементов. Преобразование сигналов в нелинейных

13.10.2021

2.7.1 НЕЛИНЕЙНЫЕ ЦЕПИ И АППРОКСИМАЦИЯ ХАРАКТЕРИСТИК НЕЛИНЕЙНЫХ ЭЛЕМЕНТОВ

Все цепи, рассматриваемые до сих пор , относились к классу линейных систем. Элементы таких цепей R, L и С являются постоянными и не зависят от воздействия. Линейные цепи описываются линейными дифференциальными уравнениями с постоянными коэффициентами.

Если элементы электрической цепи R, L и С зависят от воздействия , то цепь описывается нелинейным дифференциальным уравнением и является нелинейной. Например, для колебательного RLC -контура, сопротивление которого зависит от напряжения u c , получим:

. (1)

Такой колебательный контур является нелинейным. Элемент электрической цепи, параметры которого зависят от воздействия, называется нелинейным . Различают резистивные и реактивные нелинейные элементы.

Для нелинейного резистивного элемента характерна нелинейная связь между током i и напряжением u , т. е, нелинейная характеристика i = F(u). Наиболее распространенными резистивными нелинейными элементами являются ламповые и полупроводниковые приборы, используемые для усиления и преобразования сигналов. На рисунке 12.1 приведена ВАХ типового нелинейного элемента (полупроводникового диода).

Для резистивных нелинейных элементов важным параметром является их сопротивление, которое в отличие от линейных резисторов не является постоянным, а зависит от того, в какой точке ВАХ оно определяется .

Рисунок 12.1 - ВАХ нелинейного элемента

По ВАХ нелинейного элемента можно определить сопротивление как

(2)

где U 0 - приложенное к нелинейному элементу постоянное напряжение ;

I 0 = F(U 0 ) — протекающий по цепи постоянный ток . Это сопротивление постоянному току (или статическое) . Оно зависит от приложенного напряжения.

Пусть на нелинейный элемент действует напряжение u = U 0 + U m cos w t , причем амплитуда U m , переменной составляющей достаточно мала (рисунок 12.2 ), так что тот небольшой участок ВАХ в пределах которого действует переменное напряжение, можно считать линейным . Тогда ток. протекающий через нелинейный элемент, повторит по форме напряжение : i = I 0 + I m cos w t.

Определим сопротивление R диф как отношение амплитуды переменного напряжения U m к амплитуде переменного тока I m (на графике это отношение приращения напряжения D u к приращению тока D i ):

(3)

Рисунок 12.2 - Воздействие малого гармонического сигнала на нелинейный элемент

Это сопротивление называется дифференциальным (динамическим) и представляет собой сопротивление нелинейного элемента переменному току малой амплитуды. Обычно переходят к пределу этих приращений и определяют дифференциальное сопротивление в виде R диф =du/di.

Приборы, имеющие падающие участки на ВАХ, называются приборами с отрицательным сопротивлением, так как на этих участках производные di/du < 0 и du/di < 0.

К нелинейным реактивным элементам относятся нелинейная емкость и нелинейная индуктивность. Примером нелинейной емкости может служить любое устройство обладающее нелинейной вольт-кулонной характеристикой q = F(u) (например, вариконд и варикап). Нелинейной индуктивностью является катушка с ферромагнитным сердечником, обтекаемая сильным током, доводящим сердечник до магнитного насыщения.

Одной из важнейших особенностей нелинейных цепей является то, что в них не выполняется принцип наложения. Поэтому невозможно предсказать результат воздействия суммы сигналов, если известны реакции цепи на каждое слагаемое воздействия. Из сказанного вытекает непригодность для анализа нелинейных цепей временного и спектрального методов, которые применялись в теории линейных цепей.

Действительно, пусть вольт-амперная характеристика (ВАХ) нелинейного элемента описывается выражением i = a u 2 . Если на такой элемент действует сложный сигнал u = u 1 + u 2 , то отклик i = a (u 1 + u 2 ) 2 = a u 1 2 + a u 2 2 + 2 a u 1 u 2 отличается от суммы откликов на действие каждой составляющей в отдельности (a u 1 2 + a u 2 2 ) наличием компоненты 2 a u 1 u 2 , которая появляется только в случае одновременного воздействия обеих составляющих.

Рассмотрим вторую отличительную особенность нелинейных цепей . Пусть u = u 1 + u 2 = U m1 cos w 0 t + U m2 cos W t ,

где U m1 и U m2 - амплитуды напряжений u 1 и u 2 .

Тогда ток в нелинейном элементе с ВАХ i = a u 2 будет иметь вид:

(4)

На рисунке 12.3 построены спектры напряжения и тока. Все спектральные компоненты тока оказались новыми , не содержащимися в напряжении. Таким образом, в нелинейных цепях возникают новые спектральные компоненты . В этом смысле нелинейные цепи обладают гораздо большими возможностями, чем линейные, и широко используются для преобразований сигналов, связанных с изменением их спектров.

При изучении же теории нелинейных цепей можно не учитывать устройство нелинейного элемента и опираться только на его внешние характеристики подобно тому, как при изучении теории линейных цепей не рассматривают устройство резисторов конденсаторов и катушек и пользуются только их параметрами R, L и С .

Рисунок 12.3 - Спектры напряжения и тока квадратичного нелинейного элемента

Иллюстрация указанного воздействия на реальный полупроводниковый диод

2.7.2 Аппроксимация характеристик нелинейных элементов

Как правило, ВАХ нелинейных элементов i = F(u) получают экспериментально, поэтому чаще всего они заданы в виде таблиц или графиков . Чтобы иметь дело с аналитическими выражениями , приходится прибегать к аппроксимации.

Обозначим заданную таблично или графически ВАХ нелинейного элемента i = F V (u), а аналитическую функцию , а ппроксимирующую заданную характеристику, i = F(u, a 0 , a 1 , a 2 , … , a N ). где a 0 , a 1 , … , a N — коэффициенты этой функции, которые нужно найти в результате аппроксимации.

А) В методе Чебышева коэффициенты a 0 , a 1 , … , a N функции F(u) находятся из условия:

, (5)

т. е. они определяются в процессе минимизации максимального уклонения аналитической функции от заданной. Здесь u k , k = 1, 2, ..., G — выбранные значения напряжения u.

При среднеквадратичном приближении коэффициенты a 0 , a 1 , …, a N должны быть такими, чтобы минимизировать величину

(6)

Б) Приближение функции по Тейлору основано на представлении функции i = F(u) рядом Тейлора в окрестности точки u = U 0 :

(7)

и определении коэффициентов этого разложения. Если ограничиться первыми двумя членами разложения в ряд Тейлора, то речь пойдет о замене сложной нелинейной зависимости F(u) более простой линейной зависимостью . Такая замена называемся линеаризацией характеристик.

Первый член разложения F(U 0 ) = I 0 представляет собой постоянный ток в рабочей точке при u = U 0 , а второй ч лен

- (8)

дифференциальную крутизну вольт-амперной характеристики в рабочей точке , т. е. при u = U 0 .

В) Наиболее распространенным способом приближения заданной функции является интерполяция (метод выбранных точек), при которой к оэффициенты a 0 , a 1 , …, a N аппроксимирующей функции F(u) находятся из равенства этой функции и заданной F x (u) в выбранных точках (узлах интерполяции) u k = 1, 2, ..., N+1.

Д) Степенная (полиномиальная ) аппроксимация. Такое название получила аппроксимация ВАХ степенными полиномами:

(9)

Иногда бывает удобно решать задачу аппроксимации заданной характеристики в окрестности точки U 0 , называемой рабочей . Тогда используют степенной полином

(10)

Степенная аппроксимация широко используется при анализе работы нелинейных устройств, на которые подаются относительно малые внешние воздействия , поэтому требуется достаточно точное воспроизведение нелинейности характеристики в окрестности рабочей точки.

Е) Кусочно-линейная аппроксимация. В тех случаях, когда на нелинейный элемент воздействуют напряжения с большими амплитудами, можно допустить более приближенную замену характеристики нелинейного элемента и использовать более простые аппроксимирующие функции . Наиболее часто при анализе работы нелинейного элемента в таком режиме реальная характеристика заменяется отрезками прямых линий с различными наклонами .

С математической точки зрения это означает, что на каждом заменяемом участке характеристики используются степенные полиномы первой степени (N = 1 ) с различными значениями коэффициентов a 0 , a 1 , …, a N .

Таким образом, задача аппроксимации ВАХ нелинейных элементов заключается в выборе вида аппроксимирующей функции и определении ее коэффициентов одним из указанных выше методов.

Воздействие гармонического сигнала на цепь с нелинейным элементом

ЛЕКЦИЯ № 16

АППРОКСИМАЦИЯ ВАХ НЕЛИНЕЙНЫХ ЭЛЕМЕНТОВ. МЕТОДЫ РАСЧЕТА НЕДИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Учебные вопросы

1. Аппроксимация ВАХ нелинейных элементов. Полиномиальная аппроксимация.

2. Кусочно-линейная аппроксимация.

3. Классификация методов анализа нелинейных цепей.

4. Аналитические и численные методы анализа нелинейных цепей постоянного тока.

7. Ток в нелинейном резисторе при воздействии синусоидального напряжения.

8. Основные преобразования, осуществляемые с помощью нелинейных электрических цепей переменного тока.

1. Аппроксимация вольт-амперных характеристик нелинейных элементов

Вольт-амперные характеристики реальных элементов электрических цепей обычно имеют сложный вид и представляются в виде графиков или таблиц экспериментальных данных. В ряде случаев непосредственное применение ВАХ, задаваемых в такой форме, оказывается неудобным и их стремятся описать с помощью достаточно простых аналитических соотношений, качественно отражающих характер рассматриваемых ВАХ.

Замена сложных функций приближенными аналитическими выражениями называется аппроксимацией .

Аналитические выражения, аппроксимирующие ВАХ нелинейных резистивных элементов, должны как можно более точно описывать ход реальных характеристик.

Следовательно, задача аппроксимации ВАХ включает в себя две самостоятельные задачи:

1) выбор аппроксимирующей функции;

2) определение значений входящих в эту функцию постоянных коэффициентов наиболее часто используются два вида аппроксимации ВАХ нелинейных элементов:

Полиномиальная;

Кусочно-линейная.

1.1. Полиномиальная аппроксимация

Аппроксимация степенным полиномом выполняется на основе формулы ряда Тейлора для ВАХ НЭ:

т.е. ВАХ в данном случае должна быть непрерывной, однозначной и абсолютно гладкой (должна иметь производные любого порядка).

В практических расчетах обычно ВАХ не дифференцируют, а требуют, например, чтобы аппроксимирующая кривя (16.5) прошла через заданные токи.

В так называемом методе трех точек необходимо, чтобы некоторые три точки ВАХ:

(i 1 , u 1), (i 2 , u 2), (i 3 , u 3) – отвечали номиналу (16.5) (рис.16.9).

Из уравнений

несложно найти искомые коэффициенты a 0 , a 1 , a 2 , поскольку относительно их система (16.6) линейна.

Если ВАХ сильно изрезана и требуется отразить ее особенности, необходимо учитывать большее число точек ВАХ. Система типа (16.6) становится сложной, однако ее решение может быть найдено по формуле Лагранжа, определяющей уравнение полинома, проходящего через n точек:

(16.7)

где A k (u ) = (u u 1) ... (u u k-1) (u u k+1) ... (u u n).

Пример . Пусть нелинейный элемент имеет ВАХ, заданную графически (рис.16.10).

Требуется аппроксимировать ВАХ ИЭ степенным полиномом.

На графике ВАХ выделяются четыре точки с координатами:

На основании формулы Лагранжа (16.7) получим




Таким образом, аппроксимирующая функция имеет вид

и нэ = -6,7i 3 + 30i 2 – 13,3i .

2. Кусочно-линейная аппроксимация

При кусочно-линейной аппроксимации ВАХ НЭ аппроксимируетсясовокупностью линейных участков (кусков) вблизи возможных рабочих точек.

Пример . Для двух участков нелинейной ВАХ (рис.16.11) получим:

Пример . Пусть требуется линеаризировать участок ВАХ между токамиА иВ , который используется в качестве рабочей области около рабочей точкиР (рис.16.12).

Тогда уравнение линеаризированного участка ВАХ вблизи рабочей точки Р будет

Очевидно, что аналитическая аппроксимация ВАХ верна только для выбранного участка линеаризации.

Как указывалось ранее, удобными характеристиками нелинейных элементов являются не уравнения связи, а вольтамперная характеристика активного сопротивления
или
, или зависимость
- для нелинейной индуктивности (ампервеберная характеристика), или зависимостьq(u) – для нелинейной емкости (вольткулонная характеристика) (рис.3.8).

Рис.3.8. Виды характеристик нелинейных элементов

Однако, графическая форма характеристик нелинейных элементов (рис.3.8.) не позволяет использовать зависимости (3.1-3.15), для составления уравнений работы схем с нелинейными элементами. Поэтому одной из важнейших задач, которая возникает при анализе колебаний в схемах, содержащих нелинейные элементы, состоит в аппроксимации нелинейных характеристик. Наибольшее распространение аппроксимаций нелинейных характеристик получили полиномиальная и кусочно-линейная, а также аппроксимация с помощью различных видов трансцендентных функций.

При анализе нелинейных схем возможность получить правильный результат существенно зависит как от правильности выбора метода аппроксимации, так и от выражения аппроксимирующей функции нелинейного элемента. Возникает определенное противоречие – чем точнее аппроксимация нелинейного элемента, тем сложнее получить нужное аналитическое выражение характеристики нелинейного элемента. Но кроме этого, сложнее построить и решение нелинейного уравнения, описываюшего колебания в такой нелинейной системе, с помощью выбранного выражения аппроксимирующей функции. Поэтому правильный выбор аппроксимации нелинейной характеристики позволяет существенно упростить построение решения нелинейного уравнения. Кроме того необходимо отметить, что очень часто одну и ту же характеристику нелинейного элемента приходится по-разному аппроксимировать в зависимости от того, в каких условиях работает нелинейный элемент и какие вопросы должны быть исследованы. Поэтому, способы аппроксимации выбирают в каждом конкретном случае исследования колебаний в схемах с нелинейными элементами различными.

Рассмотрим способы аппроксимации различных функций нелинейных элементов. К наиболее распространенным способам аппроксимации нелинейных элементов относят следующие:

    полиномиальная аппроксимация ─ представление нелинейной характеристики с помощью степенного ряда,

    кусочно-линейная аппроксимация ─ представление аппроксимируемой функции отрезками прямых линий,

    аппроксимация с помощью различных видов трансцендентных функций.

Полиномиальная аппроксимация. Если любая из нелинейных характеристик задана аналитическим выражением, то в окрестности рабочей точки функция может быть представлена разложением в ряд Тейлора (
в окрестности точки х 0)

, (3.16)

где R – остаток в разложении в ряд Тейлора, которым пренебрегают при аппроксимации.

Если же характеристика задана графически (рис.3.9), то аппроксимацию можно осуществить укороченным степенным рядом (полином), ограничивая его второй - пятой степенью

Рис.3.9. Графическое представление нелинейной характеристики

Для определения коэффициентов а k требуем, чтобы при значениях переменной x k в левой части полинома (3.17) получались значения функции y k .

Составляем систему уравнений:

, где
. (3.18)

В этой системе уравнений y n , у 0 , x n , x 0 – известные величины, поэтому эту систему можно решить по методу Крамера, относительно коэффициентов a k .

Если x=x 0 +S (х 0 постоянное смещение, а S малый сигнал), то

где α – дифференциальный параметр нелинейного элемента. Таким образом, можно отметить, что первый коэффициент a 1 полиномиальной аппроксимации нелинейной характеристики (3.17) совпадает с дифференциальным параметром нелинейного элемента. Кроме того отметим, что если х=0 лежит внутри интервала (х 5 -х 1) аппроксимации нелинейной характеристики полиномом, то коэффициент а 0 определяет значение функции в начале координат (т.е. если мы рассматриваем в качестве нелинейной характеристики i=φ(u), то коэффициент а 0 =i(0) определяется как значение тока при u=0.

Кусочно-линейная аппроксимация. Кусочно-линейная аппроксимация основана на замене реальной характеристики нелинейного элемента отдельными участками, которые заменяются отрезками прямых линий (рис.3.10).

Рис.3.10. Кусочно-линейная аппроксимация нелинейного элемента

Точность кусочно-линейного приближения зависит от количества интервалов, заменяемых отрезками прямых в заданном интервале использования кусочно-линейной аппроксимации. Чем на большее количество отрезков прямых разбит интервал, для которого мы применяем кусочно-линейное приближение, тем выше точность совпадения с реальной нелинейной характеристикой, но при этом сушественно усложняется анализ колебаний в такой системе. Для упрощения расчетов желательно ограничиваться минимальным количеством отрезков прямых, замещающих нелинейную характеристику. Например, динамическую проходную характеристику триода (рис.3.10) можно аппроксимировать с достаточной степенью точности всего лишь тремя отрезками прямых линий:

. (3.20)

Замена нелинейных участков характеристик нелинейных элементов отрезками прямых, прозволяет считать и сами характеристики линейными, а это значит, что применимы теперь все методы линейной теории цепей. На протяжении линейных участков нелинейные элементы заменяются на линейные, с характеристиками равными их дифференциальным величинам.

Аппроксимация нелинейных характеристик с помощью трансцендентных функций. Иногда характеристики нелинейных элементов аппроксимируют трансцендентными функциями рис.3.11. В качестве аппроксимирующих трансцендентных функций применяются экспоненты и их суммы, тригонометрические, обратные тригонометрические, гиперболические и другие функции. Например,

или
. (3.21)

Рис.3.11. Примеры аппроксимации нелинейных характеристик

трансцендентными функциями

Для анализа и расчета нелинейных цепей необходимо задать вольт-амперные или иные аналогичные характеристики нелинейных элементов в аналитической форме. Реальные характеристики обычно имеют сложный вид, что затрудняет точное их описание с помощью достаточно простого аналитического выражения.

Широкое распространение получили способы представления характеристик относительно простыми функциями, лишь приближенно отображающими истинные характеристики. Замена истинной характеристики приближенно представляющей ее функцией называется аппроксимацией характеристики.

Оптимальный выбор способа аппроксимации зависит от вида нелинейной характеристики, а также от режима работы нелинейного элемента. Одним из наиболее распространенных способов является аппроксимация степенным полиномом.

Запишем аппроксимирующий степенной полином в форме

Если под нелинейным элементом подразумевается транзистор, то i - ток коллектора, а u - напряжение, например, между базой и эмиттером. Для вакуумного триода или пентода u - напряжение между управляющей сеткой и катодом, a i - анодный ток и т. д.

Рис. 8.4. Положение рабочей точки и пределы использования вольт-амперной характеристики (а, в), при которых применима аппроксимация полиномом второй степени

Рис. 8.5. Характеристика, для аппроксимации которой требуется полином третьей степени

Коэффициенты определяются выражениями

Нетрудно видеть, что представляет собой крутизну характеристики в точке - первую производную крутизны (с коэффициентом ), - вторую производную крутизны (с коэффициентом ) и т. д.

При заданной форме вольт-амперной характеристики коэффициенты существенно зависят от , т. е. от положения рабочей точки на характеристике.

Рассмотрим некоторые типичные и важные для практики случаи.

1. Рабочая точка расположена на начальном участке характеристики, имеющем вид квадратичной параболы (рис. 8.4). Предполагается, что подводимое к нелинейному элементу напряжение сигнала накладываясь на постоянное напряжение не выходит за точку , т. е. за начало характеристики.

Выражение (8.8) в данном случае можно записать в виде полинома второй степени

Коэффициент определяемый выражением (8.9), представляет собой крутизну характеристики (8.1) и поэтому в дальнейшем обозначается символом

Коэффициент определяется из условия, что при ток откуда вытекает уравнение

Таким образом,

2. Рабочая точка является точкой перегиба характеристики, показанной на рис. 8.5. В точке перегиба кривой все производные четного порядка равны нулю. Поэтому коэффициенты при четных степенях в выражении (8.8) обращаются в нуль и его можно записать в форме

Для упрощения анализа часто ограничиваются полиномом всего лишь третьей степени без квадратичного члена (неполным полиномом третьей степени).

Рис. 8.6. Характеристика, для аппроксимации которой требуется полином высокой степени

Заменяя, как и в п. 1, на напряжение сигнала получаем

Соответствующая этой аппроксимации характеристика показана на рис. 8.5 штриховой линией. Напряжение соответствующее экстремумам аппроксимирующей функции и отсчитываемое от , иногда называют напряжением насыщения. Заданием этого напряжения, а также (крутизны S в точке ) однозначно определяют коэффициент в выражении (8.13).

Действительно, в точке т. е. при амплитуде входного сигнала, равной , выполняется тождество

Отметим, что аппроксимацией (8.13) допустимо пользоваться, когда напряжение сигнала не выходит за пределы .

3. Рабочая точка находится на нижнем сгибе характеристики, изображенной на рис. 8.6. Если изменение напряжения настолько велико, что используется участок, обозначенный на оси абсцисс буквами а, b, то для удовлетворительной аппроксимации требуется полином пятой и более высокой степени. При этом анализ усложняется и применение степенного полинома для практических расчетов оказывается неэффективным.

При очень больших амплитудах сигнала часто удобнее заменять реальную характеристику идеализированной, линейно-ломаной, составленной из отрезков прямых линий. Такое представление характеристики называется кусочно-линейной аппроксимацией. Некоторые примеры кусочно-линейной аппроксимации изображены на рис. 8.7. Рис. 8.7, а соответствует случаю, когда используются нижний сгиб и линейная часть характеристики (участок ); рис. 8.7, б - когда сигнал захватывает нижний и верхний сгибы (участок ), а рис. 8.7, в - когда сигнал достигает также и падающего участка характеристики (участок ). Следует особо подчеркнуть, что замена реальной нелинейной характеристики линейными отрезками не означает линеаризации цепи. Например, несмотря на то, что на участке (рис. 8.7, а) характеристика линейна, по отношению к сигналу, захватывающему область изменения система в целом является существенно нелинейной.

Рис. 8.7. Примеры кусочно-линейной аппроксимации характеристики при различных пределах ее использования

Кусочно-линейная аппроксимация особенно проста и удобна для исследований и расчетов, кргда основное значение имеет нижний сгиб характеристики, т. е. когда можно ограничиваться двумя прямыми (рис. 8.7, а). При более сложной форме используемого участка характеристики число аппроксимирующих отрезков растет и кусочно-линейная аппроксимация теряет свои преимущества. В подобных случаях иногда для аппроксимации применяются различные трансцендентные функции, например гиперболический тангенс, экспоненциальные функции и некоторые другие.

Описанные выше приемы аппроксимации применимы и к соответствующим характеристикам реактивных нелинейных элементов.


Академия России

Кафедра Физики

Реферат на тему:

«АППРОКСИМАЦИЯ ХАРАКТЕРИСТИК НЕЛИНЕЙНЫХ ЭЛЕМЕНТОВ И АНАЛИЗ ЦЕПЕЙ ПРИ ГАРМОНИЧЕСКИХ ВОЗДЕЙСТВИЯХ»


Учебные вопросы

2. Графо-аналитический и аналитический методы анализа

3. Анализ цепей методом угла отсечки

4. Воздействие двух гармонических колебаний на безынерционный

нелинейный элемент

Литература


Вступление

Для всех рассмотренных ранее линейных цепей справедлив принцип суперпозиции, из которого вытекает простое и важное следствие: гармонический сигнал, проходя через линейную стационарную систему, остается неизменным по форме, приобретая лишь другие амплитуду и начальную фазу. Именно поэтому линейная стационарная цепь не способна обогатить спектральный состав входного колебания.

Особенностью НЭ, по сравнению с линейными, является зависимость параметров НЭ от величины приложенного напряжения или силы протекающего тока. Поэтому на практике при анализе сложных нелинейных цепей пользуются различными приближенными методами (например, заменяют нелинейную цепь линейной в области малых изменений входного сигнала и используют линейные методы анализа) или ограничиваются качественными выводами.

Важным свойством нелинейных электрических цепей является возможность обогащения спектра выходного сигнала. Эта важная особенность используется при построении модуляторов, преобразователей частоты, детекторов и т. д.

Решение многих задач, связанных с анализом и синтезом радиотехнических устройств и цепей, требует знания процессов, происходящих при одновременном воздействии на нелинейный элемент двух гармонических сигналов. Это связано с необходимостью перемножения двух сигналов при реализации таких устройств, как преобразователи частоты, модуляторы, демодуляторы и т. д. Естественно, что спектральный состав выходного тока НЭ при бигармоническом воздействии будет гораздо богаче, чем при моногармоническом.

Нередко возникает ситуация, когда один из двух воздействующих на НЭ сигналов мал по амплитуде. Анализ в этом случае значительно упрощается. Можно считать, что по отношению к малому сигналу НЭ является линейным, но с переменным параметром (в данном случае крутизной ВАХ). Такой режим работы НЭ называется параметрическим.


1. Аппроксимация характеристик нелинейных элементов

При анализе нелинейных цепей (НЦ) обычно не рассматривают процессы, происходящие внутри элементов, составляющих эту цепь, а ограничиваются лишь внешними их характеристиками. Обычно это зависимость выходного тока от приложенного входного напряжения

которую принято называть вольт-амперной характеристикой (ВАХ).

Самое простое – использовать имеющуюся табличную форму ВАХ для численных расчетов. Если же анализ цепи должен проводиться аналитическими методами, то возникает задача подбора такого математического выражения, которое отражало бы все важнейшие особенности экспериментально снятой характеристики.

Это не что иное, как задача аппроксимации. При этом выбор аппроксимирующего выражения определяется как характером нелинейности, так и используемыми расчетными методами.

Реальные характеристики имеют достаточно сложный вид. Это затрудняет их точное математическое описание. Кроме того, табличная форма представления ВАХ делает характеристики дискретными. В промежутках между этими точками значения ВАХ неизвестны. Прежде чем переходить к аппроксимации, необходимо как-то определиться с неизвестными значениями ВАХ, сделать ее непрерывной. Тут возникает задача интерполяции (от лат. inter – между, polio – приглаживаю) – это отыскание промежуточных значений функции по некоторым известным ее значениям. Например, отыскание значений в точках лежащих между точками по известным значениям . Если , то аналогичная процедура носит задачи экстраполяции.

Обычно аппроксимируют лишь ту часть характеристики, которая является рабочей областью, т. е. в пределах изменения амплитуды входного сигнала.

При аппроксимации вольт-амперных характеристик необходимо решить две задачи: выбрать определенную аппроксимирующую функцию и определить соответствующие коэффициенты. Функция должна быть простой и в то же время достаточно точно передавать аппроксимируемую характеристику. Определение коэффициентов аппроксимирующих функций осуществляется методами интерполяции, среднеквадратичного или равномерного приближения, которые рассматриваются в математике.

Математически постановка задачи интерполяции может быть сформулирована следующим образом.

Найти многочлен степени не больше n такой, что i = 0, 1, …, n, если известны значения исходной функции в фиксированных точках , i = 0, 1, …, n. Доказывается, что всегда существует только один интерполяционный многочлен, который может быть представлен в различных формах, например в форме Лагранжа или Ньютона. (Рассмотреть самостоятельно на самоподготовке по рекомендованной литературе).

Аппроксимация степенными полиномами и кусочно-линейная

Она основана на использовании хорошо известных из курса высшей математики рядов Тейлора и Маклорена и заключается в разложении нелинейной ВАХ в бесконечномерный ряд, сходящийся в некоторой окрестности рабочей точки . Поскольку такой ряд физически не реализуем, приходится ограничивать число членов ряда, исходя из требуемой точности. Степенная аппроксимация применяется при относительно малом изменении амплитуды воздействия относительно .

Рассмотрим типичную форму ВАХ любого НЭ (рис. 1).

Напряжение определяет положение рабочей точки и, следовательно, статический режим работы НЭ.

Рис. 1. Пример типичной ВАХ НЭ

Обычно аппроксимируется не вся характеристика НЭ, а лишь рабочая область, размер которой определяется амплитудой входного сигнала, а положение на характеристике – величиной постоянного смещения . Аппроксимирующий полином записывается в виде

где коэффициенты определяются выражениями

Аппроксимация степенным полиномом заключается в нахождении коэффициентов ряда . При заданной форме ВАХ эти коэффициенты существенно зависят от выбора рабочей точки , а также от ширины используемого участка характеристики. В этой связи целесообразно рассмотреть некоторые наиболее типичные и важные для практики случаи.






Для графа на рис. 3, приняв, что дерево образовано ветвями 2, 1 и 5 Ответ: B= Решить задачу 5, используя соотношения (8) и (9). Теория / ТОЭ / Лекция N 3. Представление синусоидальных величин с помощью векторов и комплексных чисел. Переменный ток долгое время не находил практического...

Второго порядков, работающие в условиях действия случайных возмущений, и получить аналитические выражения для этих систем, что является его достоинством. На практике используют комбинацию различных методов. Анализ нелинейного режима работы системы ЧАП Для определения некоторых характеристик системы, произведем качественный анализ системы ЧАП (рис.1) Рис.1. Структурная схема нелинейной...

Того, можно создать новые документы, в которых будет проведён расчёт для других параметров модели. 5.4.Результаты работы программы В ПРИЛОЖЕНИИ 4 приведены графики для различных параметров модели отражателя – модулятора. По эти графикам видно, что для рассчитанного в главе 4 случая расход результатов составляет около 20-30%, что, вообще говоря, является хорошим результатом, поскольку вывод...



Геномах растений, вызываемые с помощью ФПУ-трансформированной человеческой речи, которая резонансно взаимодействует с хромосомной ДНК in vivo . Этот результат, осмысленный нами с позиций семиотико-волновой составляющей генетического кода, имеет существенное методологическое значение и для анализа таких суперзнаковых объектов, как тексты ДНК, и для генома в целом. Открываются принципиально...