Виды радиосигналов и их основные характеристики. Курсовая работа: Анализ радиосигналов и расчет характеристик оптимальных согласованных фильтров Виды радиосигналов и их основные параметры

13.10.2021

Импульсные сигналы зависят от тока. Их применение в электроэнергетике, в основном, определяется системами телеметрического контроля, управле-ния, ремонтной защиты. Импульсные сигналы для передачи энергии не при-меняют. Это связано с их широким энергетическим (частотным) спектром. Они могут быть как периодическими, то есть повторяться через опреде-ленный интервал времени, либо не периодическими. Основное назначение таких сигналов – информационное.

Основные характеристики импульсных сигналов.




1) Мгновенное значение импульсного сигнала(U(t)) аналогично синусо-идальному можно определить c помощью приборов, представляющих форму сигнала.

2) Амплитудное значение U n характеризует наибольшее значение мгно-венного напряжения в интервале периода Т. Период исследования импу-льного сигнала определяется по точкам на уровне 0,5 амплитуды.

3) Время нарастания переднего фронта t ф + -- интервал времени между точками, соответствующими 0,1U m и 0,9U m . Передний фронт харак-теризует степень нарастания сигнала, т.е. как быстро импульс от уровня 0 достигает U m . В идеале t ф + должно равняться нулю, но на практике ни-когда этот интервал не равен нулю, t ф » 10 нС.

4) Время спада (заднего фронта) t ф - определяется аналогично от уровня 0,1 до 0,9 у амплитуды, но на спаде импульса. Время заднего фронта, как и переднего, также конечно. Его стремятся уменьшить, поскольку спад влияет на длительность импульса t u .

5) Длительность импульса t u – интервал времени, определяемый на уровне 0,5 амплитуды от переднего до заднего фронта. Важное значение для сигнала имеет отношение периода следования импульса к длительности импульса, называемого скважностью. Чем выше скважность, тем большее число раз импульс ²укладывается² в период следования T/m = q.

Частным случаем импульсного сигнала является ²меандр², у кото-рого скважность q = 2. Скважность косвенно указывает на энергетическую характеристику сигнала: чем она больше, тем меньшую энергию за период переносит сигнал. Поскольку сигнал характеризуется различными уровнями напряжения для него также применяют: действующее значение напряжения, аналоговая форма; средневыпрямленное значение напряжения.

Для прямоугольных сигналов эти величины оказываются равными. Часто рассматривают энергетическую характеристику - мощность сигнала. Мощность за период P определяется для прямоугольного сигнала как:



Где P u – мощность импульса, q – скважность

Мощность импульса может достигать больших величин, при этом средняя мощность оставаться невысокой. Короткими импульсами с большой амплитудой проверяются устройства.

6) Êîýôôèöèåíò ñïàäà âåðøèíû Y =

Спектр импульсных сигналов



w 0 2w 0 3w 0 4w 0 5w 0 6w 0 t

Согласно разложения в ряд Фурье периодических сигналов, импульсный сигнал также представляют состоящим из суммы множества составляющих. В первую очередь, это основная гармоника – частота исследования сигнала и ее кратные составляющие. Но вместе с ними в это разложение входит множество других гармоник, не кратных основной. Это гармоники меньшие основной и комбинации этих гармоник с основными. Такое представление показывает, что импульсного сигнала имеет широкую полосу. Все по одной линии.


Низкие частоты обеспечивают в форме импульса крышу. Чем меньше эти составляющие, тем меньше спад вершины импульса. Вместе с этим, скваж-ность нарастания и спада импульса зависит от высокочастотных составляющих в разложении сигнала. Чем больше частота, тем круче фронты импульса. Для передачи сигнала необходимо устройство, имеющее одинаковые коэффициенты передачи во всем диапазоне спектра импульса. Но такое устройство технически выполнить сложно. Поэтому всегда решают задачу: спектр выбрать поуже, а параметр импульса получше.

Основной критерий оптимизации: скважность передачи импульсных сигналов. Но сегодня в реальных системах она достигает 100Мбод = 10 8 единиц информации в сек.

Импульсные сигналы стремятся передать положительные полярности, так как полярность определяется питающим напряжением, хотя применяют импульсы отрицательной полярности для передачи информации. При измерении величины напряжения импульсных сигналов обращают внимание на прибор: пиковый вольтметр (амплитудный), средних значений, среднеквадратичных значений. Средние и среднеквадратичные значения напряжения зависят от длительности импульса. Пиковое значение – нет. Передача импульсных сигналов по проводным линиям приводит к заметному искажению сигналов: спектр сигнала сужается в ВЧ части, поэтому фронт и спад импульса увеличиваются.






По природе любые электрические сигналы делят на 2 группы: детер-минированные, случайные.

Первые в любой момент времени могут быть описаны конкретным зна-чением (мгновенным значением U(t)). Детерминированные сигналы соста-вляют большинство.

Случайные сигналы. Природа их появления непредсказуема заранее, поэтому их нельзя вычислить, обозначить в конкретной точке. Такие сигналы можно лишь исследовать, провести эксперимент, по которого опре-делить вероятностные характеристики сигналов. В энергетике к таким сигналам относят: помехи электромагнитных полей, искажающие основной сигнал. Дополнительные сигналы появляются при разрядах полных или частичных между линиями передач. Случайные сигналы анализируют, измеряют с помощью вероятностных характеристик. С точки зрения погрешностей измерения, случайные сигналы и их влияние относят к дополнительным случайным погрешностям. При этом если их величина на порядок меньше основных случайных, их из анализа можно исключить.

Амплитудная модуляция (AM) является наиболее простым и очень распространенным в радиотехнике способом заложения информации в высокочастотное колебание. При AM огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом изменения передаваемого сообщения, частота же и начальная фаза колебания поддерживаются неизменными. Поэтому для амплитудно-модулированного радиосигнала общее выражение (3.1) можно заменить следующим:

Характер огибающей А(t) определяется видом передаваемого сообщения.

При непрерывном сообщении (рис. 3.1, а) модулированное колебание приобретает вид, показанный на рис. 3.1, б. Огибающая А(t) совпадает по форме с модулирующей функцией, т. е. с передаваемым сообщением s (t). Рисунок 3.1, б построен в предположении, что постоянная составляющая функции s(t) равна нулю (в противоположном случае амплитуда несущего колебания при модуляции может не совпадать с амплитудой немодулированного колебания). Наибольшее изменение A(t) «вниз» не может быть больше . Изменение же «вверх» может быть в принципе и больше .

Основным параметром амплитудно-модулированного колебания является коэффициент модуляции.

Рис. 3.1. Модулирующая функция (а) и амплитудно-модулированное колебание (б)

Определение этого понятия особенно наглядно для тональной модуляции, когда модулирующая функция является гармоническим колебанием:

Огибающую модулированного колебания при этом можно представить в виде

где - частота модуляции; - начальная фаза огибающей; - коэффициент пропорциональности; - амплитуда изменения огибающей (рис. 3.2).

Рис. 3.2. Колебание, модулированное по по амплитуде гармонической функцией

Рис. 3.3. Колебание, модулированное амплитуде импульсной последовательностью

Отношение

называется коэффициентом модуляции.

Таким образом, мгновенное значение модулированного колебания

При неискаженной модуляции амплитуда колебания изменяется в пределах от минимальной до максимальной .

В соответствии с изменением амплитуды изменяется и средняя за период высокой частоты мощность модулированного колебания. Пикам огибающей соответствует мощность, в (1 4 раз большая мощности несущего колебания. Средняя же за период модуляции мощность пропорциональна среднему квадрату амплитуды A(t):

Эта мощность превышает мощность несущего колебания всего лишь в раз. Таким образом, при 100 %-ной модуляции (М = 1) пиковая мощность равна а средняя мощность (через обозначена мощность несущего колебания). Отсюда видно, что обусловленное модуляцией приращение мощности колебания, которое в основном и определяет условия выделения сообщения при приеме, даже при предельной глубине модуляции не превышает половины мощности несущего колебания.

При передаче дискретных сообщений, представляющих собой чередование импульсов и пауз (рис. 3.3, а), модулированное колебание имеет вид последовательности радиоимпульсов, изображенных на рис. 3.3, б. При этом имеется в виду, что фазы высокочастотного заполнения в каждом из импульсов такие же, как и при «нарезании» их из одного непрерывного гармонического колебания.

Только при этом условии показанную на рис. 3.3, б последовательность радиоимпульсов можно трактовать как колебание, модулированное лишь по амплитуде. Если от импульса к импульсу фаза изменяется, то следует говорить о смешанной амплитудно-угловой модуляции.


Лекция №5

Т ема №2: Передача ДИСКРЕТНЫХ сообщений

Тема лекции: ЦИФРОВЫЕ РАДИОСИГНАЛЫ И ИХ

Характеристики Введение

Для систем передачи данных требование достоверности передаваемой информации наиболее важно. При этом необходим логический контроль процессов передачи и приема информации. Это становится возможным при использовании цифровых сигналов для передачи информации в формализованном виде. Такие сигналы позволяют унифицировать элементную базу и использовать корректирующие коды, обеспечивающие существенное повышение помехоустойчивости.

2.1. Общие сведения о передаче дискретных сообщений

В настоящее время для передачи дискретных сообщений (данных) используются, как правило, так называемые цифровые каналы связи.

Носителями сообщений в цифровых каналах связи выступают цифровые сигналы или радиосигналы, если используются линии радиосвязи. Информационными параметрами в таких сигналах являются амплитуда, частота и фаза. Среди сопутствующих параметров особое место занимает фаза гармонического колебания. Если фаза гармонического колебания на приемной стороне точно известна и это используется при приеме, то такой канал связи считается когерентным . В некогерентном канале связи фаза гармонического колебания на приемной стороне не известна и считается, что она распределена по равномерному закону в интервале от 0 до 2.

Процесс преобразования дискретных сообщений в цифровые сигналы при передаче и цифровых сигналов в дискретные сообщения при приеме поясняется на рис.2.1.

Рис.2.1. Процесс преобразования дискретных сообщений при их передаче

Здесь учитывается, что основные операции преобразования дискретного сообщения в цифровой радиосигнал и обратно соответствуют обобщенной структурной схеме системы передачи дискретных сообщений рассмотренной на прошлой лекции (приведенной на рис.3). Рассмотрим основные виды цифровых радиосигналов.

2.2. Характеристики цифровых радиосигналов

2.2.1. Радиосигналы с амплитудной манипуляцией (аМн)

Амплитудная манипуляция (АМн). Аналитическое выражение АМн сигнала для любого момента времени t имеет вид:

s АМн (t, ) = A 0 (t ) cos ( t  ) , (2.1)

где A 0 , и - амплитуда, циклическая несущая частота и начальная фаза АМн радиосигнала, (t ) – первичный цифровой сигнал (дискретный информационный параметр).

Часто используется другая форма записи:

s 1 (t ) = 0 при = 0,

s 2 (t ) = A 0 cos ( t  ) при = 1, 0 t T , (2.2)

которая применяется при анализе АМн сигналов на отрезке времени, равном одному тактовому интервалу Т . Так как s (t ) = 0 при = 0, то АМн сигнал часто называют сигналом с пассивной паузой. Реализация АМн радиосигнала приведена на рис.2.2.

Рис.2.2. Реализация АМн радиосигнала

Спектральная плотность АМн сигнала имеет как непрерывную, так и дискретную составляющую на частоте несущего колебания . Непрерывная составляющая представляет собой спектральную плотность передаваемого цифрового сигнала (t ), перенесенную в область несущей частоты. Следует отметить, что дискретная составляющая спектральной плотности имеет место только при постоянной начальной фазе сигнала . На практике, как правило, это условие не выполняется, так как в результате различных дестабилизирующих факторов начальная фаза сигнала случайным образом изменяется во времени, т.е. является случайным процессом (t ) и равномерно распределена в интервале [- ; ]. Наличие таких фазовых флюктуаций приводит к “размыванию” дискретной составляющей. Эта особенность характерна и для других видов манипуляции. На рис.2.3 приведена спектральная плотность АМн радиосигнала.

Рис.2.3. Спектральная плотность АМн радиосигнала со случайной, равномерно

распределенной в интервале [- ; ] начальной фазой

Средняя мощность АМн радиосигнала равна
. Эта мощность поровну распределяется между непрерывной и дискретной составляющими спектральной плотности. Следовательно, в АМн радиосигнале на долю непрерывной составляющей, обусловленной передачей полезной информации, приходится лишь половина мощности излучаемой передатчиком.

Для формирования АМн радиосигнала обычно используется устройство обеспечивающее изменение уровня амплитуды радиосигнала по закону передаваемого первичного цифрового сигнала (t ) (например, амплитудного модулятора).

В качестве переносчика сообщений используются высокочастотные электромагнитные колебания (радиоволны) соответствующего диапазона, способные распространяться на большие расстояния.

Колебание несущей частоты, излучаемое передатчиком, характеризуется: амплитудой, частотой и начальной фазой. В общем случае оно представляется в виде:

i = I m sin(ω 0 t + Ψ 0) ,

где: i – мгновенное значение тока несущего колебания;

I m – амплитуда тока несущего колебания;

ω 0 – угловая частота несущего колебания;

Ψ 0 – начальная фаза несущего колебания.

Первичные сигналы (передаваемое сообщение, преобразованное в электрическую форму), управляющие работой передатчика, могут изменять один из этих параметров.

Процесс управления параметрами тока высокой частоты с помощью первичного сигнала, называется модуляцией (амплитудной, частотной, фазовой). Для телеграфных видов передач применяется термин «манипуляция».

В радиосвязи, для передачи информации, применяются радиосигналы:

радиотелеграфные;

радиотелефонные;

фототелеграфные;

телекодовые;

сложные виды сигналов.

Радиотелеграфная связь различается: по способу телеграфирования; по способу манипуляции; по применению телеграфных кодов; по способу использования радиоканала.

В зависимости от способа и скорости передачи радиотелеграфные связи делятся на ручные и автоматические. При ручной передаче манипуляция осуществляется телеграфным ключом с использованием кода МОРЗЕ. Скорость передачи (при слуховом приеме) составляет 60–100 знаков в минуту.

При автоматической передаче манипуляция осуществляется электромеханическими устройствами, а прием с помощью печатающих аппаратов. Скорость передачи 900–1200 знаков в минуту.

По способу использования радиоканала телеграфные передачи подразделяются на одноканальные и многоканальные.

По способу манипуляции к наиболее распространенным телеграфным сигналам относятся сигналы с амплитудной манипуляцией (АТ – амплитудный телеграф – А1), с частотной манипуляцией (ЧТ и ДЧТ – частотная телеграфия и двойная частотная телеграфия – F1 и F6), с относительной фазовой манипуляцией (ОФТ – фазовая телеграфия – F9).

По применению телеграфных кодов используются телеграфные системы с кодом МОРЗЕ; стартстопные системы с 5-ти и 6-ти значным кодом и другие.

Телеграфные сигналы представляют собой последовательность прямоугольных импульсов (посылок) одинаковой или различной длительности. Наименьшая по длительности посылка называется элементарной.

Основные параметры телеграфных сигналов: скорость телеграфирования (V) ; частота манипуляции (F) ;ширина спектра (2D f) .



Скорость телеграфирования V равна количеству элементарных посылок, передаваемых за одну секунду, измеряется в бодах. При скорости телеграфирования 1 бод за 1 с передается одна элементарная посылка.

Частота манипуляции F численно равна половине скорости телеграфирования V и измеряется в герцах: F= V/2 .

Амплитудно-манипулированный телеграфный сигнал имеет спектр (рис.2.2.1.1), в котором кроме несущей частоты, содержится бесконечное множество частотных составляющих, расположенных по обе стороны от нее, с интервалами равными частоте манипуляции F. На практике для уверенного воспроизведения телеграфного радиосигнала достаточно принять кроме сигнала несущей частоты по три составляющих спектра, расположенных по обе стороны от несущей. Таким образом, ширина спектра амплитудно-манипулированного телеграфного ВЧ сигнала равна 6F. Чем больше частота манипуляции, тем шире спектр ВЧ телеграфного сигнала.

Рис. 2.2.1.1. Временное и спектральное представление сигнала АТ

При частотной манипуляции ток в антенне по амплитуде не изменяется, а меняется только частота в соответствии с изменением манипулирующего сигнала. Спектр сигнала ЧТ (ДЧТ) (рис. 2.2.1.2) представляет собой как бы спектр двух (четырех) независимых амплитудно-манипулированных колебаний со своими несущими частотами. Разность между частотой «нажатия» и частотой «отжатия» называется разносом частот, обозначается ∆f и может находиться в пределах 50 – 2000 Гц (чаще всего 400 – 900 Гц). Ширина спектра сигнала ЧТ составляет 2∆f+3F.

Рис.2.2.1.2. Временное и спектральное представление сигнала ЧТ

Для повышения пропускной способности радиолинии применяются многоканальные радиотелеграфные системы. В них на одной несущей частоте радиопередатчика, можно передавать одновременно две и более телеграфные программы. Различают системы с частотным уплотнением каналов, с временным разделением каналов и комбинированные системы.

Простейшей двухканальной системой является система двойного частотного телеграфирования (ДЧТ). Сигналы, манипулированные по частоте в системе ДЧТ передаются путем изменения несущей частоты передатчика вследствие одновременного воздействия на него сигналов двух телеграфных аппаратов. При этом используется то, что сигналы двух аппаратов, работающих одновременно, могут иметь лишь четыре сочетания передаваемых посылок. При таком способе в любой момент времени излучается сигнал одной частоты, соответствующий определенному сочетанию манипулированных напряжений. В приемном устройстве имеется дешифратор, с помощью которого формируются телеграфные посылки постоянного напряжения по двум каналам. Уплотнение по частоте заключается в том, что частоты отдельных каналов размещаются на различных участках общего диапазона частот и все каналы передаются одновременно.

При временном разделении каналов радиолиния предоставляется каждому телеграфному аппарату последовательно с помощью распределителей (рис.2.2.1.3).

Рис.2.2.1.3. Многоканальная система с временным разделением каналов

Для передачи радиотелефонных сообщений применяются в основном амплитудно-модулированные и частотно-модулированные высокочастотные сигналы. Модулирующий НЧ сигнал представляет собой совокупность большого количества сигналов разных частот, расположенных в некоторой полосе. Ширина спектра стандартного НЧ телефонного сигнала, как правило, занимает полосу 0,3–3,4 кГц.

Основные параметры радиосигнала. Модуляция

§ Мощность сигнала

§ Удельная энергия сигнала

§ Длительность сигнала T определяет интервал времени, в течение которого сигнал существует (отличен от нуля);

§ Динамический диапазон есть отношение наибольшей мгновенной мощности сигнала к наименьшей:

§ Ширина спектра сигнала F - полоса частот, в пределах которой сосредоточена основная энергия сигнала;

§ База сигнала есть произведение длительности сигнала на ширину его спектра . Необходимо отметить, что между шириной спектра и длительностью сигнала существует обратно пропорциональная зависимость: чем короче спектр, тем больше длительность сигнала. Таким образом, величина базы остается практически неизменной;

§ Отношение сигнал/шум равно отношению мощности полезного сигнала к мощности шума (S/N или SNR);

§ Объём передаваемой информации характеризует пропускную способность канала связи, необходимую для передачи сигнала. Он определяется как произведение ширины спектра сигнала на его длительность и динамический диапазон

§ Энергетическая эффективность (потенциальная помехоустойчивость) характеризует достоверность передаваемых данных при воздействии на сигнал аддитивного белого гауссовского шума, при условии, что последовательность символов восстановлена идеальным демодулятором. Определяется минимальным отношением сигнал/шум (E b /N 0), которое необходимо для передачи данных через канал с вероятностью ошибки, не превышающей заданную. Энергетическая эффективность определяет минимальную мощность передатчика, необходимую для приемлемой работы. Характеристикой метода модуляции является кривая энергетической эффективности - зависимость вероятности ошибки идеального демодулятора от отношения сигнал/шум (E b /N 0).

§ Спектральная эффективность - отношение скорости передачи данных к используемой полосе пропускания радиоканала.

    • AMPS: 0,83
    • NMT: 0,46
    • GSM: 1,35

§ Устойчивость к воздействиям канала передачи характеризует достоверность передаваемых данных при воздействии на сигнал специфичных искажений: замирания вследствие многолучевого распространения, ограничение полосы, сосредоточенные по частоте или времени помехи, эффект Доплера и др.

§ Требования к линейности усилителей. Для усиления сигналов с некоторыми видами модуляции могут быть использованы нелинейные усилители класса C, что позволяет существенно снизить энергопотребление передатчика, при этом уровень внеполосного излучения не превышает допустимые пределы. Данный фактор особенно важен для систем подвижной связи.

Модуля́ция (лат. modulatio - размеренность, ритмичность) - процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала (сообщения).



Передаваемая информация заложена в управляющем (модулирующем) сигнале, а роль переносчика информации выполняет высокочастотное колебание, называемое несущим. Модуляция, таким образом, представляет собой процесс «посадки» информационного колебания на заведомо известную несущую.

В результате модуляции спектр низкочастотного управляющего сигнала переносится в область высоких частот. Это позволяет при организации вещания настроить функционирование всех приёмо-передающих устройств на разных частотах с тем, чтобы они «не мешали» друг другу.

В качестве несущего могут быть использованы колебания различной формы (прямоугольные, треугольные и т. д.), однако чаще всего применяются гармонические колебания. В зависимости от того, какой из параметров несущего колебания изменяется, различают вид модуляции (амплитудная, частотная, фазовая и др.). Модуляция дискретным сигналом называется цифровой модуляцией или манипуляцией.