Метод эквивалентных преобразований цепи примеры. Метод преобразования схем. Поскольку при последовательном соединении

29.11.2023

2.2. Параллельное соединение элементов
электрических цепей

На рис. 2.2 показана электрическая цепь с параллельным соединением сопротивлений.

Рис. 2.2

Токи в параллельных ветвях определяются по формулам:

где - проводимости 1-й, 2-й и n-й ветвей.

В соответствии с первым законом Кирхгофа, ток в неразветвленной части схемы равен сумме токов в параллельных ветвях.

Эквивалентная проводимость электрической цепи, состоящей из n параллельно включенных элементов, равна сумме проводимостей параллельно включенных элементов.
Эквивалентным сопротивлением цепи называется величина, обратная эквивалентной проводимости

Пусть электрическая схема содержит три параллельно включенных сопротивления.
Эквивалентная проводимость

Эквивалентное сопротивление схемы, состоящей из n одинаковых элементов, в n раз меньше сопротивлений R одного элемента

Возьмем схему, состоящую из двух параллельно включенных сопротивлений (рис. 2.3). Известны величины сопротивлений и ток в неразветвленной части схемы. Необходимо определить токи в параллельных ветвях.


Рис. 2.3 Эквивалентная проводимость схемы

,

а эквивалентное сопротивление

Напряжение на входе схемы

Токи в параллельных ветвях

Аналогично

Ток в параллельной ветви равен току в неразветвленной части схемы, умноженному на сопротивление противолежащей, чужой параллельной ветви и деленному на сумму сопротивлений чужой и своей параллельно включенных ветвей.

2.3.Преобразование треугольника сопротивлений
в эквивалентную звезду

Встречаются схемы, в которых отсутствуют сопротивления, включенные последовательно или параллельно, например, мостовая схема, изображенная на рис. 2.4. Определить эквивалентное сопротивление этой схемы относительно ветви с источником ЭДС описанными выше методами нельзя. Если треугольник сопротивлений R1-R2-R3, включенных между узлами 1-2-3 заменить трехлучевой звездой сопротивлений, лучи которой расходятся из точки 0 в те же узлы 1-2-3, эквивалентное сопротивление полученной схемы легко определяется.


Рис. 2.4 Сопротивление луча эквивалентной звезды сопротивлений равно произведению сопротивлений прилегающих сторон треугольника, деленному на сумму сопротивлений всех сторон треугольника.
В соответствии с указанным правилом, сопротивления лучей звезды определяются по формулам:

Эквивалентное соединение полученной схемы определяется по формуле

Сопротивления R0 и Rλ1 включены последовательно, а ветви с сопротивлениями Rλ1 + R4 и Rλ3 + R5 соединены параллельно.

2.4.Преобразование звезды сопротивлений
в эквивалентный треугольник

Иногда для упрощения схемы полезно преобразовать звезду сопротивлений в эквивалентный треугольник.
Рассмотрим схему на рис. 2.5. Заменим звезду сопротивлений R1-R2-R3 эквивалентным треугольником сопротивлений RΔ1-RΔ2-RΔ3, включенных между узлами 1-2-3.


2.5. Преобразование звезды сопротивлений
в эквивалентный треугольник

Сопротивление стороны эквивалентного треугольника сопротивлений равно сумме сопротивлений двух прилегающих лучей звезды плюс произведение этих же сопротивлений, деленное на сопротивление оставшегося (противолежащего) луча. Сопротивления сторон треугольника определяются по формулам:

Эквивалентное сопротивление преобразованной схемы равно

НОВОСТИ ФОРУМА
Рыцари теории эфира
30.12.2019 - 19:19: -> - Карим_Хайдаров.
30.12.2019 - 19:18: -> - Карим_Хайдаров.
30.12.2019 - 16:46: -> - Карим_Хайдаров.
30.12.2019 - 14:54: -> - Карим_Хайдаров.
29.12.2019 - 16:19: -> - Карим_Хайдаров.
26.12.2019 - 07:09: -> - Карим_Хайдаров.
23.12.2019 - 07:44: -> - Карим_Хайдаров.
23.12.2019 - 07:39:

Преобразования называются эквивалентными, если при замене одного участка цепи другим, более простым, токи и напряжения участка цепи, который не был преобразован, не изменяются.

При расчете электрических схем часто возникает целесообразность преобразования схем этих цепей в более простые и удобные для расчета.

Одним из основных видов преобразования электрических схем, применяемых на практике, является преобразование схемы со смешанным соединением элементов. Смешанное соединение элементов представляет собой сочетание более простых соединений – последовательного и параллельного.

Последовательное соединение

Последовательное соединение элементов цепи – соединение нескольких элементов, через которые проходит один и тот же ток.

Рисунок 3.1 Схемы последовательного соединения резисторов и индуктивностей

В соответствии с принципом эквивалентного преобразования и законом Ома имеем:

Параллельное соединение элементов

Параллельное соединение элементов – соединение нескольких элементов, при котором все эти элементы находятся под одним и тем же напряжением.

Рисунок 3. 2 Схема параллельного соединения сопротивлений

Рассмотрим параллельное соединение двух сопротивлений. В соответствии с для участка цепи с , (на вышеприведенном рисунке), . Поскольку

.

Найдем ток в каждой из параллельных ветвей , если известен общий ток и значения сопротивлений . По закону Ома ; . Тогда:

.

Полученное выражение является формулой распределения токов: ток в одной из параллельных ветвей равен общему току, умноженному на сопротивление противоположной ветви и поделенному на сумму сопротивлений обеих ветвей.

Рисунок 3.3 Схема параллельно-последовательного соединения сопротивлений

Эквивалентное преобразование треугольника сопротивлений в звезду и обратно.

Если известны сопротивления , которые образуют между узлами треугольник сопротивлений, то для расчета сопротивлений , которые соединены в эквивалентную звезду между теми же самыми узлами, используют формулы:

; ; . (3.5)

Рисунок 3.4 Схемы соединения сопротивлений треугольником (а) и звездой (б)

Обратное преобразование осуществляется при помощи формул:

; ; (3.6)

Эквивалентные преобразования схем с источниками.

Закон Ома для участка цепи с источником.

Рассмотрим понятие одноконтурной и двухузловой схем.

Эти схемы характерны тем, что имеют один контур (рисунок 3.5) и один независимый контур (рисунок 3.6) соответственно.

Рисунок 3.5 Одноконтурная схема Рисунок 3.6 Двухузловая схема

Найдем ток в первой схеме. Обозначим напряжение между точками и : . Тогда для двух условных контуров получим два уравнения:


;

Из первого уравнения получаем закон Ома для участка цепи с источником напряжения:

Реальные источники электрической энергии и их эквивалентные схемы.

Реальный источник напряжения – активный элемент, который можно представить в виде идеального источника напряжения и последовательно соединенного с ним пассивного элемента , (внутреннего сопротивления), которое учитывает потери энергии в источнике (рисунок 3.7).

Рисунок 3.7 Схема реального источника напряжения

По закону Кирхгофа можно записать , откуда получаем выражение для вольт - амперной характеристики реального источника напряжения: .

Штриховой линией показана ВАХ идеального источника напряжения: .

Рисунок 3.8 Вольт-амперная характеристика реального источника напряжения

Выясним, при каких условиях реальный источник приближается к идеальному. Найдем напряжение на зажимах реального источника, к которому подключается сопротивление нагрузки (рисунок 3.7)

(3.7)

Из уравнения 3.7 видно, что источник напряжения можно рассматривать как идеальный , если выполняется условие .

Реальный источник тока – активный двухполюсник, который состоит из идеального источника тока и параллельного включенного с ним пассивного элемента , который учитывает потери (рисунок 3.9).

Рисунок 3.9 Схема реального источника тока

В соответствии с первым законом Кирхгофа можно записать:

Это выражение описывает ВАХ реального источника тока (рисунок 3.10). Штриховой линией показана ВАХ идеального источника тока:

Рисунок 3.10 Вольт-амперная характеристика реального источника тока

Найдем ток в сопротивлении нагрузки, которая подключена к реальному источнику тока (рисунок). По формуле разложения токов

. (3.8)

Исходя из формулы (3.8), реальный источник тока приближается к идеальному при условии R i >> R H .

Некоторые схемы реальных источников напряжения (рисунок 3.7) и тока (рисунок 3.9) эквивалентны. Выясним, при каких условиях? В соответствии с принципом эквивалентных преобразований, напряжение во внешней цепи (т.е. на опорной нагрузке) не может измениться при переходе от схемы (рисунок 3.7) к схеме (рисунок 3.9): U = U`.

Для первой схемы:

,

Для второй:

,

если U=U`, то

. (3.9)

Итак, схемы реальных источников напряжения и тока эквивалентны, если выполняются условия (3.9).

После изучения подразделов 3.1 и 3.2 дайте письменные ответы на контрольные вопросы, приведенные ниже.

Если электрическая цепь содержит несколько резисторов, то для подсчёта её основных параметров (силы тока, напряжения, мощности) удобно все резистивные устройства заменить на одно эквивалентное сопротивление цепи. Только для него должно выполняться следующее требование: его сопротивление должно быть равным суммарному значению сопротивлений всех элементов, то есть показания амперметра и вольтметра в обычной схеме и в преобразованной не должны измениться. Такой подход к решению задач называется методом свёртывания цепи.

Внимание! Расчёт эквивалентного (общего или суммарного) сопротивления в случае последовательного или параллельного подключения выполняется по разным формулам.

Последовательное соединение элементов

В случае последовательного подключения все приборы соединяются последовательно друг с другом, а собранная цепь не имеет разветвлений.

При таком подключении сила тока, проходящая через каждый резистор, будет одинаковая, а общее падение напряжения складывается из суммарных падений напряжения на каждом из приборов.

Чтобы определить суммарное значение в этом случае, воспользуемся законом Ома, который записывается следующим образом:

Из вышестоящего выражения получаем значение R :

Поскольку при последовательном соединении:

  • I = I1 = I2 =…= IN (2),
  • U = U1 + U2 +…+ UN (3),

формула для расчёта эквивалентного сопротивления (R общ или R экв ) из (1) – (3) будет иметь вид:

  • Rэкв = (U1 + U2 + …+ UN)/I,
  • Rэкв = R1 + R2 + … + RN (4).

Таким образом, если имеется N последовательно соединённых одинаковых элементов, то их можно заменить на одно устройство, у которого:

Rобщ = N·R (5).

При таком подключении входы от всех устройств соединены в одной точке, выходы – в другой точке. Эти точки в физике и электротехнике называются узлами. На электрических схемах узлы представляют собой места разветвления проводников и обозначаются точками.

Расчет эквивалентного сопротивления также выполняем с помощью закона Ома.

В этом случае общее значение силы тока складывается из суммы сил токов, протекающих по каждой ветви, а величина падения напряжения для каждого устройства и общее напряжение одинаковые.

Если имеются N резистивных устройств, подключенных таким образом, то:

I = I1 + I2 + … + IN (6),

U = U1 = U2 = … = UN (7).

Из выражений (1), (6) и (7) имеем:

  • Rобщ = U/(I1 + I2 + …+ IN),
  • 1/Rэкв = 1/R1 + 1/R2 +…+ 1/RN (8).

Если имеется N одинаковых резисторов, имеющих подключение данного типа, то формула (8) преобразуется следующим образом:

Rобщ = R · R / N·R = R / N (9).

Если соединены несколько катушек индуктивности, то их суммарное индуктивное сопротивление рассчитывается так же, как и для резисторов.

Расчёт при смешанном соединении устройств

В случае смешанного подключения присутствуют участки с последовательным и параллельным подключениями элементов.

При решении задачи используют метод сворачивания цепи (метод эквивалентных преобразований). Его используют для вычисления параметров в том случае, если есть один источник энергии.

Предположим, задана следующая задача. Электрическая схема (см. рис. ниже) состоит из 7 резисторов. Рассчитайте токи на всех резисторах, если имеются следующие исходные данные:

  • R1 = 1Ом,
  • R2 = 2Ом,
  • R3 = 3Ом,
  • R4 = 6Ом,
  • R5 = 9Ом,
  • R6 = 18Ом,
  • R7 = 2,8Ом,
  • U = 32В.

Из закона Ома имеем:

где R – суммарное сопротивление всех приборов.

Его будем находить, воспользовавшись методом сворачивания цепи.

Элементы R 2 и R 3 подключены параллельно, поэтому их можно заменить на R 2,3 , величину которого можно рассчитать по формуле:

R2,3= R2·R3 / (R2+R3).

R 4 , R 5 и R 6 также включены параллельно, и их можно заменить на R 4,5,6 , которое вычисляется следующим образом:

1/R4,5,6 = 1/R4+1/R5+1/R6.

Таким образом, схему, изображённую на картинке выше, можно заменить на эквивалентную, в которой вместо резисторов R2, R3 и R4, R5, R6 используются R2,3 и R4,5,6.

Согласно картинке выше, в результате преобразований получаем последовательное соединение резисторов R1, R2,3, R4,5,6 и R7.

R общ может быть найдено по формуле:

Rобщ = R1 + R2,3 + R4,5,6 + R7.

Подставляем числовые значения и рассчитываем R для определённых участков:

  • R2.3 = 2Ом·3Ом / (2Ом + 3Ом) = 1,2Ом,
  • 1/R4,5,6 = 1/6Ом + 1/9Ом + 1/18Ом = 1/3Ом,
  • R4,5,6 = 3Ом,
  • Rэкв = 1Ом + 1,2Ом + 3Ом + 2,8Ом= 8Ом.

Теперь, после того, как нашли R экв , можно вычислять значение I :

I = 32В / 8Ом = 4А.

После того, как мы получили величину общего тока, можно вычислить силу тока, протекающую на каждом участке.

Поскольку R 1 , R2,3, R 4,5,6 и R 7 соединены последовательно, то:

I1 = I2,3 = I4,5,6 = I7 = I = 4А.

  • U2,3 = I2,3·R2,3,
  • U2,3 = 4А·1,2Ом = 4,8В.

Поскольку R2 и R3 подключены параллельно, то U 2,3 = U 2 = U 3 , следовательно:

  • I2 = U2 / R2,
  • I2 = 4,8В / 2Ом = 2,4А,
  • I3 = U3 / R3,
  • I3 = 4,8В / 3Ом = 1,6А.
  • I2,3 = I2 + I3,
  • I2,3 = 2,4А + 1,6А = 4А.
  • U4,5,6 = I4,5,6·R4,5,6,
  • U4,5,6 = 4А·3Ом = 12В.

Так как R4, R5, Rб подключены параллельно друг к другу, то:

U4,5,6 = U4 = U5 = U6 = 12В.

Вычисляем I4, I5, I6:

  • I4 = U4 / R4,
  • I4 = 12В / 6Ом = 2А,
  • I5 = U5 / R5,
  • I5 = 12В / 9Ом » 1,3А,
  • I6 = U6 / R6,
  • I5 = 12В / 18Ом » 0,7А.

Проверяем правильность решения:

I4,5,6 = 2А + 1,3А + 0,7А = 4А.

Чтобы автоматизировать выполнение расчётов эквивалентных значений для различных участков цепи, можно воспользоваться сервисами сети Интернет, которые предлагают на их сайтах выполнить онлайн вычисления нужных электрических характеристик. Сервис обычно имеет встроенную специальную программу – калькулятор, которая помогает быстро выполнить расчет сопротивления цепи любой сложности.

Таким образом, использование метода эквивалентных преобразований при расчёте смешанных соединений различных устройств позволяет упростить и ускорить выполнение вычислений основных электрических параметров.

Видео

Этот метод применим либо к отдельным участкам сложной электрической цепи, либо к электрической цепи, в которой действует один источник. Проведя по определенным правилам эквивалентные преобразования, можно свести электрическую цепь к виду:

Зависит от способа соединения пассивных элементов.

Самостоятельно!!! Рассмотреть: последовательное, параллельное, смешанное соединение и соединения «треугольником» и «звездой».

План каждого соединения:

– схема соединения;

– основные свойства этого соединения;

– формулы эквивалентных преобразований;

– пример.

1. Волынский В.А. и др. «Электротехника», 1987 г. (С. 37-41);

2. Электротехника под ред. В. Г. Герасимова. С. 22-27.;

3. Касаткин «Электротехника».

В зависимости от назначения электрической цепи ее элементы (источники, приемники, вспомогательные элементы) могут соединяться различным образом. Существует четыре основных вида соединений элементов: последовательное, параллельное, «треугольником», «звездой» и смешанное.

1. Последовательным называется соединение, при котором ток в каждом элементе один и тот же. При последовательном соединении n пассивных элементов цепи. Схема замещения с n резистивными элементами может быть заменена эквивалентной схемой с одни резистивным элементом.

Например:

2. Параллельным называется соединение, при котором все участки цепи присоединяются к одной паре узлов, то есть находятся под воздействием одного и того же напряжения.

Рис. Схема замещения цепи с параллельным соединением пассивных элементов и ее эквивалентная схема

Ток в каждой ветви определяется напряжением и сопротивлением:

.

Условия эквивалентности будут соблюдены, если ток эквивалентной схемы будет равен току в неразветвленной части цепи, то есть .

В результате получаем:

,

из которой получают формулу для эквивалентного сопротивления:

или для эквивалентной проводимости:

Эквивалентное сопротивление параллельно соединенных элементов обратно пропорционально ее эквивалентной проводимости:

поэтому оно всегда меньше наименьшего из сопротивления цепи.

Если параллельно соединены n ветвей с одинаковыми сопротивлениями R , то их эквивалентное сопротивление будет в n раз меньше сопротивления каждой ветви, то есть .

Параллельное соединение обеспечивает одинаковое напряжение на всех включенных приемниках.

3. Смешанное соединение резистивных элементов. При наличии в цепи одного источника внешнюю по отношению к нему часть схемы можно в большинстве случаев рассматривать как смешанное (последовательно-параллельное) соединение резистивных элементов.

Для расчета такой цепи удобно преобразовать ее схему замещения в эквивалентную схему с последовательным соединением резистивных элементов.

Между узлами a и b включены 3 резистивных элемента с сопротивлениями , и .

После замены параллельного соединения резистивных элементов эквивалентным резистивным элементом с сопротивлением

получается эквивалентная схема с последовательным соединением двух резистивным элементов и .

Ток в неразветвленной части: .

Токи в параллельных ветвях:

4. В некоторых сложных электрических цепях встречаются соединения элементов, которые нельзя отнести к вышеперечисленным. Типичным примером подобной сложной цепи является мостовая цепь.

Рис. Схема замещения мостовой цепи и ее эквивалентная схема

В этом случае часть цепи образует «треугольник», вершинами которого являются три узла (a , b , c ), а сторонами – три ветви с сопротивлениями , , , включенных между этими узлами. Расчет такой цепи удобно проводить, используя эквивалентную замену трех ветвей, соединенных «треугольником», тремя ветвями, соединенными трехлучевой «звездой». При замене соединения «треугольником» ветвей с сопротивлениями , , ветвями с сопротивлениями , , , соединенных «звездой», мостовая цепь преобразовывается в цепь с последовательным и параллельным соединением элементов.

Для определения сопротивления , , ветвей, соединенных «звездой», необходимо найти соотношения, связывающих их с сопротивлениями ветвей, соединенных «треугольником». С этой целью воспользуемся общим условием эквивалентности, по которым напряжения и токи в ветвях, не подвергнутых преобразованию, должны оставаться без изменения в любых режимах, в точности при размыкании ветвей, присоединенных к узлам a , b , c .

При отсоединении ветви с сопротивлением от узла a токи , а также напряжение равны соответствующим токам и и напряжению в схеме (б), то есть сопротивления между точками b и c для обеих схем (а) и (б) одинаковы.

Довольно часто при анализе линейных резистивных цепей приходится применять метод упрощения. Этот метод состоит в том, что участки электрической цепи заменяются более простыми по структуре, при этом токи и напряжения в не преобразованной части цепи не должны изменяться. При этом необходимо уметь преобразовывать последовательно и параллельно соединенные резистивные элементы, а также соединения треугольником и звездой.

2.1 Последовательное соединение резистивных элементов .

Ток во всех последовательно соединенных элементах один и тот же. Для схемы на рис. 2.1 можно записать

U = (R1 + R2 +...+ RN)I = R Э I, (2.1)

где R Э – эквивалентное сопротивление. .

Как видно из формулы, оно определяется как сумма всех последовательно включенных сопротивлений.

R Э = R1+R2+…+RN. (2.2)

2.2 Параллельное соединение резистивных элементов.

В схеме (рис. 2.2) ко всем элементам приложено одно и то же напряжение U, а ток разветвляется (I = I 1 + I 2 +...+ I n), поэтому можно записать:

(2.3)

Вводя понятие проводимости G=1/R, получим:

I = U(G 1 + G 2 +...+ G n) = UG э. (2.4)

Таким образом, эквивалентная проводимость G э параллельно включенных резистивных элементов равна сумме их проводимостей. В частном случае, если параллельно соединены два резистора, их эквивалентное сопротивление

2.3. Соединения треугольником и звездой

Во многих случаях оказывается целесообразным также преобразование сопротивлений, соединенных треугольником (рис.2.3) и эквивалентной звездой (рис.2.4).

Рис. 2.3 Рис. 2.4

Сопротивления лучей эквивалентной звезды определяют по формулам:

(2.8)

(2.9)

(2.10)

где R 1 , R 2 , R 3 – сопротивления лучей эквивалентной звезды сопротивлений, а R 12 , R 23 , R 31 – сопротивления сторон эквивалентного треугольника сопротивлений.

При замене звезды сопротивлений эквивалентным треугольником сопротивлений, сопротивления сторон треугольника рассчитывают по следующим формулам:

(2.11)

(2.12)

(2.13)

2.4 Примеры решения задач

2.1. Для электрической цепи постоянного тока с параллельным соединением резисторов R 1 , R 2 , R 3 (рис.2.5)определить ток I в неразветвленной её части и токи в отдельных ветвях: I 1 , I 2 , I 3 . Сопротивления резисторов: R 1 =5Ом, R 2 =10Ом, R 3 =15Ом, напряжение питающей сети U =110В.

Рис. 2.5

Решение. Эквивалентную проводимость всей цепи определим следующим образом:

Ток в неразветвленной части электрической цепи:

Токи в ветвях схемы:

2.2. Для условий задачи 2.1 ток в неразветвленной части цепи I =22A. Определить токи I 1 , I 2 , I 3 в ветвях резисторов R 1 , R 2 , R 3 .



Решение. Проводимости отдельных участков электрической цепи:

.

Эквивалентная проводимость цепи:

Напряжение между узловыми точками:

Токи в ветвях резисторов:

2.3. Для цепи постоянного тока, приведенной на рис.2.6, определить общий ток I и токи I 1 , I 2 , I 3 , I 4 в ветвях резисторов R 1 R 4 . к цепи подведено напряжение U =240В, сопротивления резисторов R 1 =20Ом, R 2 =15Ом, R 3 =10Ом, R 4 =5Ом.

Решение. Эквивалентное сопротивление участка электрической цепи с резисторами R 1 и R 2 :

Эквивалентное сопротивление участка цепи с резисторами R 3 и R 4 :

Общее сопротивление цепи:

Общий ток в цепи:

Рис.2.6

Падение напряжения на параллельных участках цепи:

,

Токи в ветвях соответствующих резисторов:

2.4. Соединение элементов электрической цепи по схемам «звезда» и «треугольник»

В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме (рис. 1.12). Сопротивления R 12 , R 13 , R 24 , R 34 включены в плечи моста, в диагональ 1–4 включен источник питания с ЭДС Е, другая диагональ 3–4 называется измерительной диагональю моста.

Рис. 1.12 Рис. 1.13

В мостовой схеме сопротивления R 13 , R 12 , R 23 и R 24 , R 34 , R 23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R 24 R 34 R 23 звездой R 2 R 3 R 4 (рис. 1.13). Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям:

; ; .

Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:

; ; .

После проведенных преобразований (рис. 1.13) можно определить величину эквивалентного сопротивления мостовой схемы (рис. 1.12)

.


2.5. Задачи для самостоятельного решения

2.4. Для электрической цепи постоянного тока (рис.2.7) определить токи I 1 , I 2 , I 3 при напряжении U =240В и сопротивление резистора R 1 . Сопротивление резисторов: R 2 =10Ом, R 3 =15Ом. Мощность потребляемая цепью, измеряемая ваттметром W , равна 7,2кВт.

Рис.2.7

2.5. Для разветвленной электрической цепи постоянного тока, представляемой на рис.2.7, определить токи I 1 , I 2 , I 3 при напряжении питающей сети U =80В. Сопротивление резисторов: R 1 =10Ом, R 2 =15Ом, R 3 =10Ом.

2.6. Контрольное задание

Определить эквивалентное сопротивление R экв электрической цепи постоянного тока (рис.2.8) и распределение токов в ветвях. Положение выключателя S 1 , величины сопротивлений резисторов R 1 R 12 и питающего напряжения U для каждого из вариантов задания приведены в таблице 2.1.

Рис. 2.8

Таблица 2.1

Величина Вариант задания
R 1 , Ом
R 2 , Ом
R 3 , Ом
R 4 , Ом
R 5 , Ом
R 6 , Ом
R 7 , Ом
R 8 , Ом
R 9 , Ом
R 10 , Ом
R 11 , Ом
R 12 , Ом
U , В
S 1

Продолжение таблицы 2.1

Величина Вариант задания
R 1 , Ом
R 2 , Ом
R 3 , Ом
R 4 , Ом
R 5 , Ом
R 6 , Ом
R 7 , Ом
R 8 , Ом
R 9 , Ом
R 10 , Ом
R 11 , Ом
R 12 , Ом
U , В
S 1