Курсовая работа: Анализ радиосигналов и расчет характеристик оптимальных согласованных фильтров. Виды сигналов, используемых в системах радиосвязи Основные характеристики радиосигналов

27.10.2021

Амплитудная модуляция (AM) является наиболее простым и очень распространенным в радиотехнике способом заложения информации в высокочастотное колебание. При AM огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом изменения передаваемого сообщения, частота же и начальная фаза колебания поддерживаются неизменными. Поэтому для амплитудно-модулированного радиосигнала общее выражение (3.1) можно заменить следующим:

Характер огибающей А(t) определяется видом передаваемого сообщения.

При непрерывном сообщении (рис. 3.1, а) модулированное колебание приобретает вид, показанный на рис. 3.1, б. Огибающая А(t) совпадает по форме с модулирующей функцией, т. е. с передаваемым сообщением s (t). Рисунок 3.1, б построен в предположении, что постоянная составляющая функции s(t) равна нулю (в противоположном случае амплитуда несущего колебания при модуляции может не совпадать с амплитудой немодулированного колебания). Наибольшее изменение A(t) «вниз» не может быть больше . Изменение же «вверх» может быть в принципе и больше .

Основным параметром амплитудно-модулированного колебания является коэффициент модуляции.

Рис. 3.1. Модулирующая функция (а) и амплитудно-модулированное колебание (б)

Определение этого понятия особенно наглядно для тональной модуляции, когда модулирующая функция является гармоническим колебанием:

Огибающую модулированного колебания при этом можно представить в виде

где - частота модуляции; - начальная фаза огибающей; - коэффициент пропорциональности; - амплитуда изменения огибающей (рис. 3.2).

Рис. 3.2. Колебание, модулированное по по амплитуде гармонической функцией

Рис. 3.3. Колебание, модулированное амплитуде импульсной последовательностью

Отношение

называется коэффициентом модуляции.

Таким образом, мгновенное значение модулированного колебания

При неискаженной модуляции амплитуда колебания изменяется в пределах от минимальной до максимальной .

В соответствии с изменением амплитуды изменяется и средняя за период высокой частоты мощность модулированного колебания. Пикам огибающей соответствует мощность, в (1 4 раз большая мощности несущего колебания. Средняя же за период модуляции мощность пропорциональна среднему квадрату амплитуды A(t):

Эта мощность превышает мощность несущего колебания всего лишь в раз. Таким образом, при 100 %-ной модуляции (М = 1) пиковая мощность равна а средняя мощность (через обозначена мощность несущего колебания). Отсюда видно, что обусловленное модуляцией приращение мощности колебания, которое в основном и определяет условия выделения сообщения при приеме, даже при предельной глубине модуляции не превышает половины мощности несущего колебания.

При передаче дискретных сообщений, представляющих собой чередование импульсов и пауз (рис. 3.3, а), модулированное колебание имеет вид последовательности радиоимпульсов, изображенных на рис. 3.3, б. При этом имеется в виду, что фазы высокочастотного заполнения в каждом из импульсов такие же, как и при «нарезании» их из одного непрерывного гармонического колебания.

Только при этом условии показанную на рис. 3.3, б последовательность радиоимпульсов можно трактовать как колебание, модулированное лишь по амплитуде. Если от импульса к импульсу фаза изменяется, то следует говорить о смешанной амплитудно-угловой модуляции.


Сигнал - физический процесс, отображающий сообщение. В технических системах чаще всего используются электрические сигналы. Сигналы, как правило, являются функциями времени.

1. Классификация сигналов

Сигналы можно классифицировать по различным признакам:

1. Непрерывные ( аналоговые) - сигналы, которые описываются непрерывными функциями времени, т.е. принимают непрерывное множество значений на интервале определения. Дискретные - описываются дискретными функциями времени т.е. принимают конечное множество значений на интервале определения.

Детерминированные - сигналы, которые описываются детерминированными функциями времени, т.е. значения которых определены в любой момент времени. Случайные - описываются случайными функциями времени, т.е. значения которых в любой момент времени является случайной величиной. Случайные процессы (СП) можно классифицировать на стационарные, нестационарные, эргодические и неэргодические, а так же, гауссовы, марковские и т.д.

3. Периодические - сигналы, значения которых повторяются через интервал, равный периоду

х (t) = х (t+nT), где n = 1,2,...,¥; T - период.

4. Kаузальные - сигналы, имеющие начало во времени.

5. Финитные - сигналы конечной длительности и равные нулю вне интервала определения.

6. Когерентные - сигналы, совпадающие во всех точках определения.

7. Ортогональные - сигналы противоположные когерентным.

2. Характеристики сигналов

1. Длительность сигнала ( время передачи) Т с - интервал времени, в течении которого существует сигнал.

2. Ширина спектра F c - диапазон частот, в пределах которых сосредоточена основная мощность сигнала.

3. База сигнала - произведение ширины спектра сигнала на его длительность.

4. Динамический диапазон D c - логарифм отношения максимальной мощности сигнала - P max к минимальной - P min (минимально-различи-мая на уровне помех):

D c = log (P max /P min).

В выражениях, где может быть использованы логарифмы с любым основанием, основание логарифма не указывается.

Как правило, основание логарифма определяет единицу измерения (например: десятичный - [Бел], натуральный - [Непер]).

5. Объем сигнала определяется соотношениемV c = T c F c D c .

6. Энергетические характеристики: мгновенная мощность - P (t); средняя мощность - P ср и энергия - E. Эти характеристики определяются соотношениями:

P (t) = x 2 (t); ; (1)

где T = t max - t min .

3. Математические модели случайных сигнлов

Детерминированное, т.е. заранее известное сообщение, не содержит информации, т.к получателю заранее известно, каким будет переда-ваемый сигнал. Поэтому сигналы носят статистический характер .

Случайный (стохастический, вероятностный) процесс - процесс, который описывается случайными функциями времени.

Случайный процесс Х (t) может быть представлен ансамблем неслучайных функций времени x i (t), называемых реализациями или выборками (см. рис.1).


Рис.1. Реализации случайного процесса X (t)

Полной статистической характеристикой случайного процесса является n - мерная функция распределения: F n (x 1 , x 2 ,..., x n ; t 1 , t 2 ,..., t n), или плотность вероятности f n (x 1 , x 2 ,..., x n ; t 1 , t 2 ,..., t n).

Использование многомерных законов связанно с определенными трудностями,

поэтому часто ограничиваются использованием одномерных законов f 1 (x, t), характеризующих статистические характеристики случайного процесса в отдельные моменты времени, называемые сечениями случайного процесса или двумерных f 2 (x 1 , x 2 ; t 1 , t 2), характеризующих не только статистические характеристики отдельных сечений, но и их статистическую взаимосвязь.

Законы распределения являются исчерпывающими характеристиками случайного процесса, но случайные процессы могут быть достаточно полно охарактеризованы и с помощью, так называемых, числовых характеристик (начальных, центральных и смешанных моментов). При этом наиболее часто используются следующие характеристики: математическое ожидание (начальный момент первого порядка)

; (2)

средний квадрат (начальный момент второго порядка)

; (3)

дисперсия (центральный момент второго порядка)

; (4)

корреляционная функция, которая равна корреляционному моменту соответствующих сечений случайного процесса

. (5)

При этом справедливо следующее соотношение:

(6)

Стационарные процессы - процессы, в которых числовые характеристики не зависят от времени.

Эргодические процессы - процесс, в которых результаты усреднения и по множеству совпадают.

Гауссовы процессы - процессы с нормальным законом распределения:

(7)

Этот закон играет исключительно важную роль в теории передачи сигналов, т.к большинство помех являются нормальными.

В соответствии с центральной предельной теоремой большинство случайных процессов являются гауссовыми.

Марковский процесс - случайный процесс, у которых вероятность каждого последующего значения определяется только одним предыдущим значением.

4. Формы аналитического описания сигналов

Сигналы могут быть представлены во временной, операторной или частотной области, связь между которыми определяется с помощью преобразований Фурье и Лапласа (см. рис.2).

Преобразование Лапласа:

L -1: (8)

Преобразования Фурье:

F -1: (9)

Рис.2 Области представления сигналов

При этом могут быть использованы различные формы представления сигналов с виде функций, векторов, матриц, геометрическое и т.д.

При описании случайных процессов во временной области используется, так называемая, корреляционная теория случайных процессов, а при описании в частотной области - спектральная теория случайных процессов.

С учетом четности функций

и и в соответствии с формулами Эйлера: (10)

можно записать выражения для корреляционной функции R x (t) и энергетического спектра (спектральной плотности) случайного процесса S x (w), которые связанны преобразованием Фурье или формулами Винера - Хинчина

; (11) . (12)

5. Геометрическое представление сигналов и их характеристик

Любые n - чисел можно представить в виде точки (вектора) в n -мерном пространстве, удаленной от начала координат на расстоянии D ,

где . (13)

Сигнал длительностью T с и шириной спектра F с , в соответствии с теоремой Котельникова определяется N отсчетами, где N = 2F c T c .

Этот сигнал может быть представлен точкой в n - мерном пространстве или вектором, соединяющим эту точку с началом координат .

Длина этого вектора (норма) равна:

; (14)

где x i =x (n Dt) - значение сигнала в момент времени t = n. Dt.

Допустим: X - передаваемое сообщение, а Y - принимаемое. При этом они могут быть представлены векторами (рис.3).

X1 , Y1

0 a 1 a 2 x1 y1

Рис.3. Геометрическое представление сигналов

Определим связи между геометрическим и физическим представлением сигналов. Для угла между векторами X и Y можно записать

cos g = cos (a 1 - a 2) = cos a 1 cos a 2 + sin a 1 sin a 2 =

В качестве переносчика сообщений используются высокочастотные электромагнитные колебания (радиоволны) соответствующего диапазона, способные распространяться на большие расстояния.

Колебание несущей частоты, излучаемое передатчиком, характеризуется: амплитудой, частотой и начальной фазой. В общем случае оно представляется в виде:

i = I m sin(ω 0 t + Ψ 0) ,

где: i – мгновенное значение тока несущего колебания;

I m – амплитуда тока несущего колебания;

ω 0 – угловая частота несущего колебания;

Ψ 0 – начальная фаза несущего колебания.

Первичные сигналы (передаваемое сообщение, преобразованное в электрическую форму), управляющие работой передатчика, могут изменять один из этих параметров.

Процесс управления параметрами тока высокой частоты с помощью первичного сигнала, называется модуляцией (амплитудной, частотной, фазовой). Для телеграфных видов передач применяется термин «манипуляция».

В радиосвязи, для передачи информации, применяются радиосигналы:

радиотелеграфные;

радиотелефонные;

фототелеграфные;

телекодовые;

сложные виды сигналов.

Радиотелеграфная связь различается: по способу телеграфирования; по способу манипуляции; по применению телеграфных кодов; по способу использования радиоканала.

В зависимости от способа и скорости передачи радиотелеграфные связи делятся на ручные и автоматические. При ручной передаче манипуляция осуществляется телеграфным ключом с использованием кода МОРЗЕ. Скорость передачи (при слуховом приеме) составляет 60–100 знаков в минуту.

При автоматической передаче манипуляция осуществляется электромеханическими устройствами, а прием с помощью печатающих аппаратов. Скорость передачи 900–1200 знаков в минуту.

По способу использования радиоканала телеграфные передачи подразделяются на одноканальные и многоканальные.

По способу манипуляции к наиболее распространенным телеграфным сигналам относятся сигналы с амплитудной манипуляцией (АТ – амплитудный телеграф – А1), с частотной манипуляцией (ЧТ и ДЧТ – частотная телеграфия и двойная частотная телеграфия – F1 и F6), с относительной фазовой манипуляцией (ОФТ – фазовая телеграфия – F9).

По применению телеграфных кодов используются телеграфные системы с кодом МОРЗЕ; стартстопные системы с 5-ти и 6-ти значным кодом и другие.

Телеграфные сигналы представляют собой последовательность прямоугольных импульсов (посылок) одинаковой или различной длительности. Наименьшая по длительности посылка называется элементарной.

Основные параметры телеграфных сигналов: скорость телеграфирования (V) ; частота манипуляции (F) ;ширина спектра (2D f) .



Скорость телеграфирования V равна количеству элементарных посылок, передаваемых за одну секунду, измеряется в бодах. При скорости телеграфирования 1 бод за 1 с передается одна элементарная посылка.

Частота манипуляции F численно равна половине скорости телеграфирования V и измеряется в герцах: F= V/2 .

Амплитудно-манипулированный телеграфный сигнал имеет спектр (рис.2.2.1.1), в котором кроме несущей частоты, содержится бесконечное множество частотных составляющих, расположенных по обе стороны от нее, с интервалами равными частоте манипуляции F. На практике для уверенного воспроизведения телеграфного радиосигнала достаточно принять кроме сигнала несущей частоты по три составляющих спектра, расположенных по обе стороны от несущей. Таким образом, ширина спектра амплитудно-манипулированного телеграфного ВЧ сигнала равна 6F. Чем больше частота манипуляции, тем шире спектр ВЧ телеграфного сигнала.

Рис. 2.2.1.1. Временное и спектральное представление сигнала АТ

При частотной манипуляции ток в антенне по амплитуде не изменяется, а меняется только частота в соответствии с изменением манипулирующего сигнала. Спектр сигнала ЧТ (ДЧТ) (рис. 2.2.1.2) представляет собой как бы спектр двух (четырех) независимых амплитудно-манипулированных колебаний со своими несущими частотами. Разность между частотой «нажатия» и частотой «отжатия» называется разносом частот, обозначается ∆f и может находиться в пределах 50 – 2000 Гц (чаще всего 400 – 900 Гц). Ширина спектра сигнала ЧТ составляет 2∆f+3F.

Рис.2.2.1.2. Временное и спектральное представление сигнала ЧТ

Для повышения пропускной способности радиолинии применяются многоканальные радиотелеграфные системы. В них на одной несущей частоте радиопередатчика, можно передавать одновременно две и более телеграфные программы. Различают системы с частотным уплотнением каналов, с временным разделением каналов и комбинированные системы.

Простейшей двухканальной системой является система двойного частотного телеграфирования (ДЧТ). Сигналы, манипулированные по частоте в системе ДЧТ передаются путем изменения несущей частоты передатчика вследствие одновременного воздействия на него сигналов двух телеграфных аппаратов. При этом используется то, что сигналы двух аппаратов, работающих одновременно, могут иметь лишь четыре сочетания передаваемых посылок. При таком способе в любой момент времени излучается сигнал одной частоты, соответствующий определенному сочетанию манипулированных напряжений. В приемном устройстве имеется дешифратор, с помощью которого формируются телеграфные посылки постоянного напряжения по двум каналам. Уплотнение по частоте заключается в том, что частоты отдельных каналов размещаются на различных участках общего диапазона частот и все каналы передаются одновременно.

При временном разделении каналов радиолиния предоставляется каждому телеграфному аппарату последовательно с помощью распределителей (рис.2.2.1.3).

Рис.2.2.1.3. Многоканальная система с временным разделением каналов

Для передачи радиотелефонных сообщений применяются в основном амплитудно-модулированные и частотно-модулированные высокочастотные сигналы. Модулирующий НЧ сигнал представляет собой совокупность большого количества сигналов разных частот, расположенных в некоторой полосе. Ширина спектра стандартного НЧ телефонного сигнала, как правило, занимает полосу 0,3–3,4 кГц.

Основные параметры радиосигнала. Модуляция

§ Мощность сигнала

§ Удельная энергия сигнала

§ Длительность сигнала T определяет интервал времени, в течение которого сигнал существует (отличен от нуля);

§ Динамический диапазон есть отношение наибольшей мгновенной мощности сигнала к наименьшей:

§ Ширина спектра сигнала F - полоса частот, в пределах которой сосредоточена основная энергия сигнала;

§ База сигнала есть произведение длительности сигнала на ширину его спектра . Необходимо отметить, что между шириной спектра и длительностью сигнала существует обратно пропорциональная зависимость: чем короче спектр, тем больше длительность сигнала. Таким образом, величина базы остается практически неизменной;

§ Отношение сигнал/шум равно отношению мощности полезного сигнала к мощности шума (S/N или SNR);

§ Объём передаваемой информации характеризует пропускную способность канала связи, необходимую для передачи сигнала. Он определяется как произведение ширины спектра сигнала на его длительность и динамический диапазон

§ Энергетическая эффективность (потенциальная помехоустойчивость) характеризует достоверность передаваемых данных при воздействии на сигнал аддитивного белого гауссовского шума, при условии, что последовательность символов восстановлена идеальным демодулятором. Определяется минимальным отношением сигнал/шум (E b /N 0), которое необходимо для передачи данных через канал с вероятностью ошибки, не превышающей заданную. Энергетическая эффективность определяет минимальную мощность передатчика, необходимую для приемлемой работы. Характеристикой метода модуляции является кривая энергетической эффективности - зависимость вероятности ошибки идеального демодулятора от отношения сигнал/шум (E b /N 0).

§ Спектральная эффективность - отношение скорости передачи данных к используемой полосе пропускания радиоканала.

    • AMPS: 0,83
    • NMT: 0,46
    • GSM: 1,35

§ Устойчивость к воздействиям канала передачи характеризует достоверность передаваемых данных при воздействии на сигнал специфичных искажений: замирания вследствие многолучевого распространения, ограничение полосы, сосредоточенные по частоте или времени помехи, эффект Доплера и др.

§ Требования к линейности усилителей. Для усиления сигналов с некоторыми видами модуляции могут быть использованы нелинейные усилители класса C, что позволяет существенно снизить энергопотребление передатчика, при этом уровень внеполосного излучения не превышает допустимые пределы. Данный фактор особенно важен для систем подвижной связи.

Модуля́ция (лат. modulatio - размеренность, ритмичность) - процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала (сообщения).



Передаваемая информация заложена в управляющем (модулирующем) сигнале, а роль переносчика информации выполняет высокочастотное колебание, называемое несущим. Модуляция, таким образом, представляет собой процесс «посадки» информационного колебания на заведомо известную несущую.

В результате модуляции спектр низкочастотного управляющего сигнала переносится в область высоких частот. Это позволяет при организации вещания настроить функционирование всех приёмо-передающих устройств на разных частотах с тем, чтобы они «не мешали» друг другу.

В качестве несущего могут быть использованы колебания различной формы (прямоугольные, треугольные и т. д.), однако чаще всего применяются гармонические колебания. В зависимости от того, какой из параметров несущего колебания изменяется, различают вид модуляции (амплитудная, частотная, фазовая и др.). Модуляция дискретным сигналом называется цифровой модуляцией или манипуляцией.

По принципу обмена информацией различают три вида радиосвязи:

    симплексная радиосвязь;

    дуплексная радиосвязь;

    полудуплексная радиосвязь.

По типу аппаратуры, используемой в радиоканале связи, различают следующие виды радиосвязи:

    телефонная;

    телеграфная;

    передачи данных;

    факсимильная;

    телевизионная;

    радиовещания.

По типу используемых радиоканалов связи различают следующие виды радиосвязи:

    поверхностной волной;

    тропосферная;

    ионосферная;

    метеорная;

    космическая;

    радиорелейная.

Виды документированной радиосвязи:

    телеграфная связь;

    передача данных;

    факсимильная связь.

Телеграфная связь – для передачи сообщений в виде буквенно-цифрового текста.

Передача данных для обмена формализованной информацией между человеком и ЭВМ или между ЭВМ.

Факсимильная связь для передачи электрическими сигналами неподвижных изображений.

1 – Телекс – для обмена письменной корреспонденцией между организациями и учреждениями с использованием пишущих машинок с электронной памятью;

2 – Теле (видео) текст – для получения информации из ЭВМ на мониторы;

3 – Теле (бюро) факс – для получения используются факсимильные аппараты (либо у пользователей, либо на предприятиях).

В радиосетях широко используются следующие виды сигналов радиосвязи:

А1 - AT с манипуляцией незатухающими колебаниями;

А2 - манипуляция тонально-модулируемыми колебаниями

АЗН - А1 (В1) - ОМ с 50 % несущей

АЗА - А1 (В1) - ОМ с 10 % несущей

АЗУ1 - А1 (Bl) - ОМ без несущей

3. Особенности распространения радиоволн различных диапазонов.

Распространение радиоволн мириаметрового, километрового и гектометрового диапазонов.

Для оценки характера распространения радиоволн того или иного диапазона необходимо знать электрические свойства материальных сред, в которых распространяется радиоволна, т.е. знать и ε А земли и атмосферы.

Закон полного тока в дифференциальной форме гласит, что

т.е. изменение во времени потока магнитной индукции обуславливает появление тока проводимости и тока смещения.

Запишем это уравнение с учетом свойств материальной среды:

λ < 4 м - диэлектрик

4 м < λ < 400 м – полупроводник

λ > 400 м – проводник

Морская вода:

λ < 3 м - диэлектрик

3 cм < λ < 3 м – полупроводник

λ > 3 м – проводник

Для волны мириаметрового (CВД):

λ = 10 ÷ 100 км f = 3 ÷ 30 кГц

и километрового (ДВ):

λ = 10 ÷ 1 км f = 30 ÷ 300 кГц

диапазонов поверхность земли по своим электрическим параметрам приближается к идеальному проводнику, а ионосфера имеет наибольшую проводимость и наименьшую диэлектрическую проницаемость, т.е. близка к проводнику.

RV диапазонов CДВ и ДВ практически не проникают в землю и ионос­феру, отражаясь от их поверхности и могут распространяться по естест­венным радиотрассам на значительные расстояния без существенной потери энергии поверхностными и пространственными волнами.

Т.к. длина волныСДВ диапазона соизмерима с расстоянием до нижней границы ионосферы, то понятие простой и поверхностной волны теряет смысл.

Процесс распространения RVрассматривается как происходящий в сферическом волноводе:

Внутренняя сторона - земля

Внешняя сторона (ночью - слой Е, днем - слой Д)

Волноводный процесс характеризуется незначительными потерями энергии.

Оптимальные RV – 25 ÷ 30 км

Критические RV (сильное затухание) - 100 км и более.

Присущи явления: - замирания, радиоэха.

Замирания (фединги) в результате интерференции RV, прошедших раз­ные пути и имеющие разные фазы в точке приема.

Если в противофазе в точке приема поверхностная и пространственная волна, то это фединг.

Если в противофазе в точке приема пространственные волны, то это дальний фединг.

Радиоэхо - это повторение сигнала в результате последовательного приема волн, отразившихся от ионосферы разное число раз (ближнее ради­оэхо) или пришедших в точку приема без и после огибания земного шара (дальнее радиоэхо).

Земная поверхность имеет устойчивые свойства , а места измерения условий ионизации ионосферы мало влияют на распространениеRV СДВ диапазона, то величина энергии радиосигнала мало изменяется в течение суток, года и вэкстремальных условиях.

В диапазоне км волн хорошо выражены и поверхностная и пространствен­ная волны (и днем, и ночью), особенно на волнах λ> 3 км.

Поверхностные волны при излучении имеют угол возвышения не более 3-4 градусов, а пространственные волны излучаются под большими углами к земной поверхности.

Критический угол падения RV км диапазона очень мал (днем на слой Д, а ночью на слой Е). Лучи с углами возвышения, близко к 90 ° отражаются от ионосферы.

Поверхностные волны км диапазона, благодаря хорошей дифракционной способнос­ти, могут обеспечить связь на расстояние до 1000 км и более. Однако с расстоянием эти волны сильно затухают. (На 1000 км поверхностная вол­на по интенсивности меньше пространственной).

На очень большие расстояния связь осуществляется только прост­ранственной км волной. В области равной интенсивности поверхностной и пространственной волн наблюдается ближний фединг. Условия расп­ространения км волн практически не зависят от сезона, уровня солнечной активности, слабо зависят от времени суток (ночью уровень сигнала боль­ше).

Прием в км диапазоне редко ухудшается из-за сильных атмосфер­ных помех (гроза).

При переходе от КМ (ДВ) км к гектометровому диапазону уменьшается проводимость земли и ионосферы. ε земли и приближается к ε атмос­феры.

Возрастают потери в земле. Волны глубже проникают в ионосферу. На расстоянии в несколько сот км начинают преобладать пространственные волны, т.к. поверхностные поглощаются землей и затухают.

На расстоянии примерно 50-200 км поверхностные и пространственные волны равны по интенсивности и может проявляться ближний фединг.

Замирания частые и глубокие.

С уменьшением λ глубина замираний возрастает при уменьшении дли­тельности запираний.

Особенно сильные замирания на λ больше 100 м.

Средняя длительность замираний колеблется от нескольких секунд (1 сек) до нескольких десятков секунд.

Условия радиосвязи в гектометровом диапазоне (СВ) зависят от сезона и времени суток, т.к. слой Д исчезает, а слой Е – выше, причем в слое Д большое поглощение.

Дальность связи ночью больше, чем днем.

Зимой условия приема улучшаются за счет уменьшения электронной плотности ионосферы и ослабляются в атмосферных полях. В городах при­ем сильно зависит от промышленных помех.

Распространение RV - декаметрового диапазона (КВ).

При переходе от СВ к КВ потери в земле сильно увеличиваются (зем­ля является несовершенным диэлектриком), в атмосфере (ионосфе­ре)-уменьшается.

Поверхностные волны на естественных радиотрассах КВ диапазона имеют малое значение (слабая дифракция, сильное поглощение).